APPLICATION OF ${}^{13}_{\rm C}$ N.M.R. IN A RE-EXAMINATION OF THE ISOPROPYLIDENATION OF \underline{D} -RIBOSE DIETHYLDITHIOACETAL AND ERYTHRITOL

Gaffar Aslani-Shotorbani, J. Grant Buchanan,* Alan R. Edgar,*
Douglas Henderson, and Miss Parvin Shahidi.

Department of Chemistry, Heriot-Watt University, Riccarton, Currie, Edinburgh EH14 4AS, Scotland.

<u>Summary:</u> The di- $\underline{0}$ -isopropylidene acetals resulting from the reaction of \underline{D} -ribose diethyldithioacetal and erythritol with acidic acetone have been shown to contain 5- and 7- but not 6-membered rings.

In a series of isopropylidene acetals of known structure the 13 C chemical shifts of the acetal carbon 1,2 and the methyl groups 1 show a clear correlation with the acetal ring size. We have now examined the isopropylidenation of two polyols in which there is a possibility of forming isomeric acetals with varied ring sizes. Foster 3 reported that isopropylidenation of $\underline{\mathbf{p}}$ -ribose diethyldithioacetal using acetone with $\mathbf{H}_{2}\mathbf{S0}_{1}$ and anhydrous $\mathbf{CuS0}_{1}$ gave a \mathbf{di} - $\mathbf{0}$ -isopropylidene compound, later assigned 4 the structure (1). Horton, 5 on the other hand, by an X-ray structure of a derived compound, provided evidence for the isomeric diacetal (2). Using anhydrous $\mathbf{CuS0}_{1}$ as catalyst Szarek and Jones 6 detected (t.1.c.) two \mathbf{di} - $\mathbf{0}$ -isopropylidene compounds and van \mathbf{Es} has recently described the isolation of (1) and (2) from such a reaction.

In our hands reaction under Foster's conditions afforded two di-0-isopropylidene compounds, $(2)\{[\alpha]_D-93.6^{\circ}(\text{CHCl}_3)\}$ and $(3)\{[\alpha]_D-21.5^{\circ}(\text{CHCl}_3)\}$, each in 40% yield; the structures were deduced from the c.m.r. spectra (see Table). The spectrum of (2) showed the presence of two 5-membered 1,3-dioxolan rings. (2) was converted into the benzoate (4), m.p. 82-83°, $[\alpha]_D-32^{\circ}(\text{CHCl}_3)\{\text{Lit.},^{3}\text{m.p.} 79-80^{\circ}, [\alpha]_D-32^{\circ}\}$, whose c.m.r. spectrum (Table) again showed the presence of two 5-membered rings. In the c.m.r. spectrum of (3) two different ring-sizes were evident, automatically precluding (1) and (2) as structures and there was positive evidence for both a 5- and 7-membered ring. Under our conditions we had no evidence for the formation of (1), the other products being monoacetals.

Acid catalysed reaction of acetone with erythritol gave the crystalline acetal(5)^{8,9} (90%), while kinetic isopropylidenation using 2,2-dimethoxypropene afforded (5) (63%) and a syrupy isomer (6) (30%). The methyl signals for the 1,3-dioxepan ring in 3 and 6 are well separated, in contrast to the monocyclic dioxepan already described. Treatment of

(6) with acidic acetone caused formation of (5) (90%). Stoddart 10 has reported the formation of 7 and 8 as minor products of methylenation of methyl p-ribonate and erythritol.

It is clear 1,2 that 13C spectroscopy is a valuable method of determining acetal ring sizes. Furthermore our results suggest that some previous assignments may be incorrect and that 7-membered isopropylidene acetals may be more common than previously supposed.

EtS SEt
$$R$$
 2 R=CH(SEt)2 R 3 R=CH(SEt)2 R 7 R 7 R 7 R 8 R=CO₂Me R 8 R=H

Table. ¹³C Chemical Shifts (p.p.m. from Me₄Si, 20 MHz, CDCl₃) for Isopropylidene Acetals.

Compound	Acetal Carbon	Methyl Carbons	Δ8 Methyl Carbons	Ring size
2	109.50 108.95	not resolved	€2.07	5,5
3	108.13 101.56	25.58 28.18 24.59 23.53	0.99 4.65	5,7
4	109.71 109.17	27.68 26.65 25.26 25.15	2.42 1.50	5 , 5
5	109.37	26.63 25.16	1.47	5,5
6	108.41 101.73	25.64 28.32 24.73 23.49	0.91 4.83	5 , 7

We thank Dr. Ian H. Sadler and his colleagues of Edinburgh University for the spectra.

References

- 1. J.G. Buchanan, M.E. Chacon-Fuertes, A.R. Edgar, S.J. Moorhouse, D.I. Rawson and R.H. Wightman, Tetrahedron Letters, preceding communication.
- 2. J.P. Clayton, R.S. Oliver, N.H. Rogers and T.J. King, J.C.S. Perkin I, 1979,838.
- 3. M.A.Bukhari, A.B.Foster, J.Lehmann, J.M.Webber, and J.H.Westwood, J.Chem.Soc., 1963, 2291.
- 4. K.W.Buck, A.B.Foster, B.H.Rees, J.M.Webber, and F.E.Hardy, Carbohydrate Res., 1966, 2, 115.
- 5. A. Ducruix, C. Pascard-Billy, S.J. Eitelman, and D. Horton, J.Org. Chem., 1976, 41, 2652.
- 6. D.G. Lance, W.A. Szarek, and J.K.N. Jones, Canad. J. Chem., 1969, 47, 2889.
- 7. K. Blumberg, A. Fuccelo, and T. van Es, Carbohydrate Res., 1979, 70, 217.
- 8. A. Speier, Ber., 1895, 28, 2531.
- 9. A.B. Foster, A.H. Olavesen, and J.M. Webber, J.Chem.Soc., 1961, 5095.
- 10. I.J. Burden and J.F. Stoddart, J.C.S.Perkin I, (a) 1975,675; (b) 1975,666.

(Received in UK 28 February 1980)